Polycrystalline indium-doped ZnO thin films: preparation and characterization

نویسندگان

  • S. ILICAN
  • Y. CAGLAR
  • M. CAGLAR
  • B. DEMIRCI
چکیده

Zinc oxide (ZnO) and indium-doped zinc oxide (IZO) thin films have been deposited onto glass substrates by the spray pyrolysis method. The variations of the structural, electrical and optical properties with the indium incorporation were investigated. The crystal structure and orientation of the ZnO and IZO thin films were investigated by XRD patterns. All the deposited films are polycrystalline in nature. The grain sizes were calculated almost 31-36 nm. Morphological characterization and compositions of the films were performed by SEM and EDX analyses, respectively. It was observed that the surface morphologies of the films are almost uniform particle size distribution for the films. The optical absorbance through the films was measured spectrophotometrically in the wavelength range 200–900 nm. The optical band gap, Urbach parameters and optical parameters were determined. The electrical resistivity was obtained by the Van der Pauw method in dark and under UV-illumination. The effect of the light on the films shows that the obtained thin films can be used as a photovoltaic material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on Structural and Optical Characterization of In-Zn-S Ternary Thin Films Prepared by Spray Pyrolysis

Thin films of indium doped zinc sulfide (ZnS) for different indium (In) concentrations (x=0.0 - 0.8) were deposited onto glass substrate by spray pyrolysis method at 523K temperature. Aqueous solution of zinc acetate, indium chloride and thiorea were used to deposit the In-Zn-S film. The deposited thin films were characterized by Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM)...

متن کامل

Al Doped ZnO Thin Films; Preparation and Characterization

ZnO is a promising material suitable for variety of novel electronic applications including sensors, transistors, and solar cells. Intrinsic ZnO film has inferiority in terms of electronic properties, which has prompted researches and investigations on doped ZnO films in order to improve its electronic properties. In this work, aluminum (Al) doped ZnO (AZO) with various concentrations and undop...

متن کامل

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

An experimental and theoretical study on the physical properties of Al doped ZnO thin films

In this research, ZnO thin films with Al impurity as dopant were coated onto cleaned glass substrates by the spray pyrolysis technique. Crystal structure of the thin films was studied via XRD, and UV-vis spectroscopy was carried out to investigate their optical properties. Finally, in order to study the effect of Al impurity in ZnO thin films, the band structures of both pure and doped systems ...

متن کامل

Indium Doping Effect on Structural, Optical and Electrical Properties of Sprayed ZnO Thin Films

In the current work, indium doped zinc oxide thin films were deposited by spray pyrolysis technique on glass substrate at 350 °C. The effect of the preparation conditions on the structural, morphological, optical and electrical properties of the films has been studied. The molar ratio of indium in the spray solution was varied from 0 to 5 at %. All the deposited films are polycrystalline with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008